| ntroduction

TheEasy Drivergives you the capability to drive bipolar steppertors between 150mA to 700mA per
phase.

Har dware Overview

The Easy Driver is designed Byian Schmalzand is designed around the A3967 IC. This IC Esajou
to drive bipolar stepper motors that are 4, 6,-@rii& configurations. The board can either workhwgt3V
or 5V systems, making it extremely versatile. Twoumting holes on-board give the user the option to
mechanically stabilize the Easy Driver.

Pin Descriptions
Let's take a look at all of the pins broken ouinfrthe A3967 IC on the Easy Driver.
Board Top Pins

If you look across the top of the board, you wéeésseveral pins.

PFORST o “runau: ns2
]

= = :
1003t 0@

~FIIITERELLILLL

They function as follows:

« Coil A+ - H-Bridge 2 Output A. Half of connection point foi-polar stepper motor coil A.

Coil A- - H-Bridge 2 Output B. Half of connection point fai-polar stepper motor coil A.

Coil B+ - H-Bridge 1 Output A. Half of connection point floi-polar stepper motor coil B.

Coail B- - H-Bridge 1 Output B. Half of connection point fai-polar stepper motor coil B.

PFD - Voltage input that selects output current detayge. If PFD > 0.6Vcc, slow decay mode is
activated. If PFD < 0.21Vcc, fast decay mode isvated. Mixed decay occurs at 0.21Vce< PFD <
0.6Vcc.

RST - Logic Input. When set LOW, all STEP commandsignered and all FET functionality is
turned off. Must be pulleHIGH to enable STEP control.

ENABLE -Logic Input. Enables the FET functionality withime motor driver. If set taIGH, the
FETs will be disabled, and the IC will not driveetmotor. If set taow all FETs will be enabled,
allowing motor control.

MS2 -Logic Input. See truth table below for HIGH/LOWictionality.

GND - Ground.

M+ - Power Supply. 6-30V, 2A supply.

Bottom Board Pins

There are also pins across the bottom of the bddmeir functions are described below.

o0 = : ..gumuzhm,:n.fi XK)

SLP NS1

EasyOriver - M- gup sTEP DIR

GND - Ground.

5V -Output. This pin can be used to power extermalidry. 70mA max is required for Easy Driver
functionality.

SLP - Logic Input. When pulledow outputs are disabled and power consumption isnmzed.
MS1 - Logic Input. See truth table below for HIGH/LOMhctionality.
GND - Ground.

STEP -Logic Input. Any transition on this pin frooowto HIGH will trigger the motor to step
forward one step. Direction and size of step igradled by DIR and MSx pin settings. This will
either be 0-5V or 0-3.3V, based on the logic sebect

DIR -Logic Input. This pin determines the directiomadtor rotation. Changes in state fremsH to
Lowor Lowto HIGH only take effect on the next rising edge of th&BTcommand. This will either be
0-5V or 0-3.3V, based on the logic selection.

Microstep Select Resolution Truth Table

MS1 M S2 Microstep Resolution
L L Full Step (2 Phase)
H L Half Step

L H Quarter Step

H H Eigth Step

Solder Jumpers

There are two solder jumpers on board. These peawe following features to the user:

3/5V - This jumper allows the user to set the configgaraof VCC between 3.3V or 5V. With the
jumper open, VCC will be 5V. If the jumper is clos&/CC is 3.3V.

gy

BBa/sv

« APWR - This jumper allows the user to source Vcc onSY&SND pins to external hardware.

Potentiometer

The potentiometer on board is included to allowsisiee ability to select the max current providedte
motor. It ranges from 150mA to 750mA. This will tee you to be aware what current range your motor
can handle — check the motor’'s data sheet foruheiat settings.

If you can't find this information, have no feayeu can still find the proper setting for the pdiemeter.
First, set it to the lowest setting of the potem@ter. Keep in mind that the potentiometer is éficso be
careful to not force the potentiometer past thelmaeial stops when turning it. Once you have théomo
being driven at a slow, yet steady speed, slowty tiie potentiometer and pay attention to the n'tor
behavior. You should find a sweet spot where theomadoesn’t skip or jerk between steps.

Har dware Hookup

Connect Motor Coil Wires

You will need to determine the wire pairs for eaoll on the motor you plan to use. The most reéabl
method to do this is to check the datasheet fontbtor.

WIRING DIAGRAM
) j Q
Gy ©
i l

YLL BLL

Coail wire diagram from the datasheet our NEMA 16 Sepper Motor with Cable.

However, if you are using a 4-wire or 6-wire stappetor, it is still possible to determine the owite
pairs without the datasheet.

For a 4-wire motor, take one wire and check itsstasce against each of the three remaining wires.
Whichever wire shows the lowest resistance agé#nestirst wire is the pair mate. The remaining twices
should show similar resistance between the twhernt

For a 6-wire motor, you will need to determine whaf three the wires go together for one coil. Riok
wire, and test this against all other wires. Twoewishould show some resistance between them ariisth
wire picked, while the other three will show no nention at all. Once the three wires for one caitdbeen
determined, find two of the three that show thénbgj resistance between them. These will be yooiictwl
wires. Repeat for the second group of three wires.

Once you have determined the coil wire pairs, ydunged to attach them to the Easy Driver. Thstfooil
pair should be plugged into Coil A+ and Coil A-,ilehthe second coil pair plugs into Coil B+ and ..
There is no polarity on the coils, so you don’tachézworry about plugging in a coil backwards oa th
board. In our example, we are using a 4-coil mokbe connections between the Easy Driver and nastor
as follows.

Easy Driver— Motor
« A+ — Green Wire
« A- — Red Wire
- B+ — Blue Wire
« B-— Yellow Wire

Note: Do not connect or disconnect the motor whilethe Easy Driver is powered.

Connect a Power Supply

Once your motor is connected, you can then cormpotver supply to the Easy Driver. You can use any
kind of power supply (desktop, wall adapter, batfgwwer, etc.), but verify that whatever choice gaou
with is capable of providing up to 2A and fallstie range of 6V to 30V.

Connect the power supply to M+ and GNREM EM BER to disconnect the power before
connecting/disconnecting your motor.

Connect a Microcontroller

For this example, we will be using tBparkFun RedBoardHowever, any microcontroller that works at
3.3V or 5V logic and has digital I/O with PWM cajlalg will work for this example.

Here are the following pin connections for our epén

RedBoard— Easy Driver

. D2— STEP
« D3— DIR

« D4— MS1
« D5— MS2

- D6 — ENABLE

Final Circuit

Once you have everything connected, your circwousthlook like the following:

.
8

mnann
mninn

fritzing
Arduino Code

Basic Arduino Code Example

Now that you have the hardware hooked up and readgy, it's time to get the code uploaded. First,
download the example sketch.

For the most up-to-date code available, pleasekdiedSitHub repositoryIf you need a reminder as to
how to install an Arduino library, please check out tutorialhere

The first section of the sketch defines all of fie connections between the Redboard and the EaggrD
It also sets these pins as outputs, and puts theéne tproper logic levels to begin driving the mioto

//Declare pin functions on Redboard
#define stp 2

#define dir 3

#define MS1 4

#define MS2 5

#define EN 6

/IDeclare variables for functions
char user_input;

int x;

inty;

int state;

void setup() {

pinMode(stp, OUTPUT);

pinMode(dir, OUTPUT);

pinMode(MS1, OUTPUT);

pinMode(MS2, OUTPUT);

pinMode(EN, OUTPUT);

resetEDPIns(); //Set step, direction, microstep a
Serial.begin(9600); //Open Serial connection for
Serial.printin("Begin motor control");
Serial.printin();

/[Print function list for user selection
Serial.printin("Enter number for control option:"
Serial.printin("1. Turn at default microstep mode
Serial.printin("2. Reverse direction at default m
Serial.printin("3. Turn at 1/8th microstep mode."
Serial.printin("4. Step forward and reverse direc
Serial.printin();

}

nd enable pins to default states
debugging

);

");

icrostep mode.");
);

tions.");

One thing worth noting is that the code also ifi#és the serial connection at 9600bps. This esabie
user (you!) to control the motor’s functionalitycdadebug your circuit if needed.

The main loop of the code is pretty simple. The Buatd scans the serial port for input from the user
When it is received, it's compared to the four plaiesfunctions for the motor, which are triggeredn user
input. If no valid input is received, the RedBoarthts an error over the serial port. After theuested
function is completed, the pins on the Easy Drarerreset to the defaults.

//Main loop
void loop() {
while(Serial.available()){
user_input = Serial.read(); /Read user input
digitalWrite(EN, LOW); //Pull enable pin low
if (user_input =='1")

StepForwardDefault();
else if(user_input =="2")
ReverseStepDefault();

else if(user_input =='3")

{
SmallStepMode();

else if(user_input =='4")

{
ForwardBackwardStep();

}

else
Serial.printin("Invalid option entered.");

}
resetEDPIns();

}
}

and trigger appropriate function
to allow motor control

The first of the four functions this demo sketclalgies is a basic example to show the motor spinnioge
direction. The direction pin is heledbw which for our sketch, we define as the ‘forwaddection. The
sketch then transitions the step gigH, pauses, and then pulla.@w Remember, the motor only steps
when the step pin transitions frarowto HIGH, thus we have to switch the state of the pin lzaakforth.
This is repeated 1000 times, and then the RedBeauksts more user input to determine the nextmoto

activity.

/IDefault microstep mode function
void StepForwardDefault()

{

Serial.printin("Moving forward at default step mo de.");
digitalWrite(dir, LOW); //Pull direction pin low to move "forward"
for(x= 1; x<1000; x++) //Loop the forward steppi ng enough times for motion to be
visible
digitalWrite(stp,HIGH); //Trigger one step forw ard
delay(1);
digitalWrite(stp,LOW); //Pull step pin low so i t can be triggered again
delay(1);

Serial.printin("Enter new option");
Serial.printin();

}

The reverse function works exactly the same asottveard function. The only difference is that irestieof
pulling the direction pinow we set itHIGH, thus switching the direction of the motor spimeQhing you
can try on either of these first two functions isdifying the motor speed by changing the valueeiay()

It is currently set to 1 microsecond, making eaelp pulse take 2 microseconds. Increasing the dalay
slow down the motor, while decreasing the delay spéed up the motor.

/IReverse default microstep mode function
void ReverseStepDefault()

Serial.printin("Moving in reverse at default step mode.");
digitalWrite(dir, HIGH); //Pull direction pin hig h to move in "reverse"
for(x= 1; x<1000; x++) //Loop the stepping enoug h times for motion to be visible

digitalWrite(stp,HIGH); //Trigger one step

delay(1);

digitalWrite(stp,LOW); //Pull step pin low so i t can be triggered again
delay(1);

Serial.printin("Enter new option");
Serial.printin();

}

The third function shows off the different micrggpéng functionality that the Easy Driver providés.
enable the motor to step in 1/8th microsteps, wstreet MS1, and MSRIGH. This sets the logic of the
board to 1/8th microstep mode. If you want to hfneemotor step at a different microstep mode, chdhg
settings for one of the MS# pins. Check the tratilé in the Hardware Overview section, if you naed
reminder of what settings are enabled by the varpn states.

/I 1/8th microstep foward mode function
void SmallStepMode()

Serial.printin("Stepping at 1/8th microstep mode. ");
digitalWrite(dir, LOW); //Pull direction pin low to move "forward"
digitalWrite(MS1, HIGH); //Pull MS1, and MS2 high to set logic to 1/8th microstep
resolution
digitalWrite(MS2, HIGH);
for(x= 1; x<1000; x++) //Loop the forward steppi ng enough times for motion to be
visible
digitalWrite(stp,HIGH); //Trigger one step forw ard
delay(1);
digitalWrite(stp,LOW); //Pull step pin low so i t can be triggered again
delay(1);
}

Serial.printin("Enter new option");
Serial.printin();

}

The final motor function available shows how theton@an change direction on the fly. The functioorks
just as the forward and reverse functions abovieswiiches between states quickly. This exampléesigip
the motor 1000 steps forward and then reverse $@¥. This allows you to precisely move something
with the motor in one direction, and return to $@ting position exactly. Precise position contsa great
benefit of stepper motors!

/[Forward/reverse stepping function
void ForwardBackwardStep()

Serial.printin("Alternate between stepping forwar d and reverse.");

for(x= 1; x<5; x++) //Loop the forward stepping enough times for motion to be
visible

{

//Read direction pin state and change it
state=digitalRead(dir);
if(state == HIGH)

digitalWrite(dir, LOW);
else if(state ==LOW)

digitalWrite(dir,HIGH);

for(y=1; y<1000; y++)

digitalWrite(stp,HIGH); //Trigger one step

delay(1);

digitalWrite(stp,LOW); //Pull step pin low so it can be triggered again
delay(1);

}

Serial.printin("Enter new option:");
Serial.printin();

}

Once the requested action is completed, the pirst beuset back to the default state to preventpewizd
or unwanted motor behavior. We use #stEDPins() function to achieve this.

/IReset Easy Driver pins to default states
void resetEDPins()

digitalWrite(stp, LOW);

digitalWrite(dir, LOW);

digitalWrite(MS1, LOW);

digitalWrite(MS2, LOW);

digitalWrite(EN, HIGH);
}

Additional Examples
In addition to the example here, you can also ingta AccelStepper Library. There are some addélo
examples with this library that may be benefictaybu for use with your Easy Driver. Download thirsd

install the library in your Arduino libraries direcy.

You can also find some additional examples on Bsi&asy Driver page here.

