
 | NOVEMBER 2013 | WWW.usENix.ORg PAgE 5

The Night Watch
J a m e s m i c k e n s

A s a highly trained academic researcher, I spend a lot of time trying
to advance the frontiers of human knowledge. However, as someone
who was born in the South, I secretly believe that true progress is

a fantasy, and that I need to prepare for the end times, and for the chickens
coming home to roost, and fast zombies, and slow zombies, and the polite
zombies who say “sir” and “ma’am” but then try to eat your brain to acquire
your skills. When the revolution comes, I need to be prepared; thus, in the
quiet moments, when I’m not producing incredible scientific breakthroughs,
I think about what I’ll do when the weather forecast inevitably becomes
RIVERS OF BLOOD ALL DAY EVERY DAY. The main thing that I ponder is
who will be in my gang, because the likelihood of post-apocalyptic survival
is directly related to the size and quality of your rag-tag group of associates.
There are some obvious people who I’ll need to recruit: a locksmith (to open
doors); a demolitions expert (for when the locksmith has run out of ideas);
and a person who can procure, train, and then throw snakes at my enemies
(because, in a world without hope, snake throwing is a reasonable way to
resolve disputes). All of these people will play a role in my ultimate success
as a dystopian warlord philosopher. However, the most important person in
my gang will be a systems programmer. A person who can debug a device
driver or a distributed system is a person who can be trusted in a Hobbesian
nightmare of breathtaking scope; a systems programmer has seen the terrors
of the world and understood the intrinsic horror of existence. The systems
programmer has written drivers for buggy devices whose firmware was
implemented by a drunken child or a sober goldfish. The systems program-
mer has traced a network problem across eight machines, three time zones,
and a brief diversion into Amish country, where the problem was transmitted
in the front left hoof of a mule named Deliverance. The systems program-
mer has read the kernel source, to better understand the deep ways of the
universe, and the systems programmer has seen the comment in the sched-
uler that says “DOES THIS WORK LOL,” and the systems programmer has
wept instead of LOLed, and the systems programmer has submitted a kernel
patch to restore balance to The Force and fix the priority inversion that was
causing MySQL to hang. A systems programmer will know what to do when
society breaks down, because the systems programmer already lives in a
world without law.

James Mickens is a researcher
in the Distributed systems
group at Microsoft’s Redmond
lab. His current research
focuses on web applications,

with an emphasis on the design of Javascript
frameworks that allow developers to
diagnose and fix bugs in widely deployed
web applications. James also works on fast,
scalable storage systems for datacenters.
James received his PhD in computer science
from the university of Michigan, and a
bachelor’s degree in computer science from
georgia Tech. mickens@microsoft.com

https://www.usenix.org
mickens@microsoft.com

 | NOVEMBER 2013 | WWW.usENix.ORg PAgE 6

The Night Watch

Listen: I’m not saying that other kinds of computer people
are useless. I believe (but cannot prove) that PHP developers
have souls. I think it’s great that database people keep trying
to improve select-from-where, even though the only queries
that cannot be expressed using select-from-where are inap-
propriate limericks from “The Canterbury Tales.” In some
way that I don’t yet understand, I’m glad that theorists are
investigating the equivalence between five-dimensional Tur-
ing machines and Edward Scissorhands. In most situations,
GUI designers should not be forced to fight each other with
tridents and nets as I yell “THERE ARE NO MODAL DIA-
LOGS IN SPARTA.” I am like the Statue of Liberty: I accept
everyone, even the wretched and the huddled and people who
enjoy Haskell. But when things get tough, I need mission-crit-
ical people; I need a person who can wear night-vision goggles
and descend from a helicopter on ropes and do classified
things to protect my freedom while country music plays in the
background. A systems person can do that. I can realistically
give a kernel hacker a nickname like “Diamondback” or “Zeus
Hammer.” In contrast, no one has ever said, “These semi-
transparent icons are really semi-transparent! IS THIS THE
WORK OF ZEUS HAMMER?”

I picked that last example at random. You must believe me
when I say that I have the utmost respect for HCI people.
However, when HCI people debug their code, it’s like an
art show or a meeting of the United Nations. There are tea
breaks and witticisms exchanged in French; wearing a non-
functional scarf is optional, but encouraged. When HCI code
doesn’t work, the problem can be resolved using grand theo-
ries that relate form and perception to your deeply personal
feelings about ovals. There will be rich debates about the
socioeconomic implications of Helvetica Light, and at some
point, you will have to decide whether serifs are daring state-
ments of modernity, or tools of hegemonic oppression that
implicitly support feudalism and illiteracy. Is pinching-and-
dragging less elegant than circling-and-lightly-caressing?
These urgent mysteries will not solve themselves. And yet,
after a long day of debugging HCI code, there is always hope,
and there is no true anger; even if you fear that your drop-
down list should be a radio button, the drop-down list will
suffice until tomorrow, when the sun will rise, glorious and
vibrant, and inspire you to combine scroll bars and left-click-
ing in poignant ways that you will commemorate in a sonnet
when you return from your local farmer’s market.

This is not the world of the systems hacker. When you debug a
distributed system or an OS kernel, you do it Texas-style. You
gather some mean, stoic people, people who have seen things
die, and you get some primitive tools, like a compass and a
rucksack and a stick that’s pointed on one end, and you walk
into the wilderness and you look for trouble, possibly while

using chewing tobacco. As a systems hacker, you must be pre-
pared to do savage things, unspeakable things, to kill runaway
threads with your bare hands, to write directly to network
ports using telnet and an old copy of an RFC that you found in
the Vatican. When you debug systems code, there are no high-
level debates about font choices and the best kind of turquoise,
because this is the Old Testament, an angry and monochro-
matic world, and it doesn’t matter whether your Arial is Bold
or Condensed when people are covered in boils and pestilence
and Egyptian pharaoh oppression. HCI people discover bugs
by receiving a concerned email from their therapist. Systems
people discover bugs by waking up and discovering that their
first-born children are missing and “ETIMEDOUT ” has been
written in blood on the wall.

What is despair? I have known it—hear my song. Despair is
when you’re debugging a kernel driver and you look at a mem-
ory dump and you see that a pointer has a value of 7. THERE IS
NO HARDWARE ARCHITECTURE THAT IS ALIGNED ON
7. Furthermore, 7 IS TOO SMALL AND ONLY EVIL CODE
WOULD TRY TO ACCESS SMALL NUMBER MEMORY.
Misaligned, small-number memory accesses have stolen
decades from my life. The only things worse than misaligned,
small-number memory accesses are accesses with aligned buf-
fer pointers, but impossibly large buffer lengths. Nothing ruins
a Friday at 5 P.M. faster than taking one last pass through the
log file and discovering a word-aligned buffer address, but a
buffer length of NUMBER OF ELECTRONS IN THE UNI-
VERSE. This is a sorrow that lingers, because a 2893 byte read
is the only thing that both Republicans and Democrats agree is
wrong. It’s like, maybe Medicare is a good idea, maybe not, but
there’s no way to justify reading everything that ever existed a
jillion times into a mega-jillion sized array. This constant war
on happiness is what non-systems people do not understand
about the systems world. I mean, when a machine learning
algorithm mistakenly identifies a cat as an elephant, this is
actually hilarious. You can print a picture of a cat wearing an
elephant costume and add an ironic caption that will entertain
people who have middling intellects, and you can hand out cop-
ies of the photo at work and rejoice in the fact that everything
is still fundamentally okay. There is nothing funny to print
when you have a misaligned memory access, because your
machine is dead and there are no printers in the spirit world.
An impossibly large buffer error is even worse, because these
errors often linger in the background, quietly overwriting your
state with evil; if a misaligned memory access is like a criminal
burning down your house in a fail-stop manner, an impossibly
large buffer error is like a criminal who breaks into your house,
sprinkles sand atop random bedsheets and toothbrushes, and
then waits for you to slowly discover that your world has been
tainted by madness. Indeed, the common discovery mode for
an impossibly large buffer error is that your program seems to

https://www.usenix.org

 | NOVEMBER 2013 | WWW.usENix.ORg PAgE 7

The Night Watch

be working fine, and then it tries to display a string that should
say “Hello world,” but instead it prints “#a[5]:3!” or another
syntactically correct Perl script, and you’re like WHAT THE
HOW THE, and then you realize that your prodigal memory
accesses have been stomping around the heap like the Incred-
ible Hulk when asked to write an essay entitled “Smashing
Considered Harmful.”

You might ask, “Why would someone write code in a grotesque
language that exposes raw memory addresses? Why not use
a modern language with garbage collection and functional
programming and free massages after lunch?” Here’s the
answer: Pointers are real. They’re what the hardware under-
stands. Somebody has to deal with them. You can’t just place
a LISP book on top of an x86 chip and hope that the hardware
learns about lambda calculus by osmosis. Denying the exis-
tence of pointers is like living in ancient Greece and denying
the existence of Krackens and then being confused about why
none of your ships ever make it to Morocco, or Ur-Morocco,
or whatever Morocco was called back then. Pointers are like
Krackens—real, living things that must be dealt with so that
polite society can exist. Make no mistake, I don’t want to write
systems software in a language like C++. Similar to the Necro-
nomicon, a C++ source code file is a wicked, obscure document
that’s filled with cryptic incantations and forbidden knowl-
edge. When it’s 3 A.M., and you’ve been debugging for 12 hours,
and you encounter a virtual static friend protected volatile
templated function pointer, you want to go into hibernation and
awake as a werewolf and then find the people who wrote the
C++ standard and bring ruin to the things that they love. The
C++ STL, with its dyslexia-inducing syntax blizzard of colons
and angle brackets, guarantees that if you try to declare any
reasonable data structure, your first seven attempts will result
in compiler errors of Wagnerian fierceness:

Syntax error: unmatched thing in thing from std::nonstd::__

map<_Cyrillic, _$$$dollars>const basic_string< epic_

mystery,mongoose_traits < char>, __default_alloc_<casual_

Fridays = maybe>>

One time I tried to create a list<map<int>>, and my syntax
errors caused the dead to walk among the living. Such things
are clearly unfortunate. Thus, I fully support high-level lan-
guages in which pointers are hidden and types are strong and
the declaration of data structures does not require you to solve
a syntactical puzzle generated by a malevolent extraterrestrial
species. That being said, if you find yourself drinking a martini
and writing programs in garbage-collected, object-oriented
Esperanto, be aware that the only reason that the Esperanto
runtime works is because there are systems people who have
exchanged any hope of losing their virginity for the exciting
opportunity to think about hex numbers and their relationships

with the operating system, the hardware, and ancient blood
rituals that Bjarne Stroustrup performed at Stonehenge.

Perhaps the worst thing about being a systems person is that
other, non-systems people think that they understand the daily
tragedies that compose your life. For example, a few weeks ago,
I was debugging a new network file system that my research
group created. The bug was inside a kernel-mode component,
so my machines were crashing in spectacular and vindic-
tive ways. After a few days of manually rebooting servers, I
had transformed into a shambling, broken man, kind of like a
computer scientist version of Saddam Hussein when he was
pulled from his bunker, all scraggly beard and dead eyes and
florid, nonsensical ramblings about semi-imagined enemies.
As I paced the hallways, muttering Nixonian rants about my
code, one of my colleagues from the HCI group asked me what
my problem was. I described the bug, which involved concur-
rent threads and corrupted state and asynchronous message
delivery across multiple machines, and my coworker said,
“Yeah, that sounds bad. Have you checked the log files for
errors?” I said, “Indeed, I would do that if I hadn’t broken every
component that a logging system needs to log data. I have a
network file system, and I have broken the network, and I have
broken the file system, and my machines crash when I make
eye contact with them. I HAVE NO TOOLS BECAUSE I’VE
DESTROYED MY TOOLS WITH MY TOOLS. My only logging
option is to hire monks to transcribe the subjective experience
of watching my machines die as I weep tears of blood.” My co-
worker, in an earnest attempt to sympathize, recounted one of
his personal debugging stories, a story that essentially involved
an addition operation that had been mistakenly replaced with
a multiplication operation. I listened to this story, and I said,
“Look, I get it. Multiplication is not addition. This has been
known for years. However, multiplication and addition are at
least related. Multiplication is like addition, but with more
addition. Multiplication is a grown-up pterodactyl, and addi-
tion is a baby pterodactyl. Thus, in your debugging story, your
code is wayward, but it basically has the right idea. In contrast,
there is no family-friendly GRE analogy that relates what my
code should do, and what it is actually doing. I had the mod-
est goal of translating a file read into a network operation, and
now my machines have tuberculosis and orifice containment
issues. Do you see the difference between our lives? When you
asked a girl to the prom, you discovered that her father was a
cop. When I asked a girl to the prom, I DISCOVERED THAT
HER FATHER WAS STALIN.”

In conclusion, I’m not saying that everyone should be a
systems hacker. GUIs are useful. Spell-checkers are useful.
I’m glad that people are working on new kinds of bouncing
icons because they believe that humanity has solved cancer
and homelessness and now lives in a consequence-free world

https://www.usenix.org

 | NOVEMBER 2013 | WWW.usENix.ORg PAgE 8

The Night Watch

of immersive sprites. That’s exciting, and I wish that I could
join those people in the 27th century. But I live here, and I live
now, and in my neighborhood, people are dying in the streets.
It’s like, French is a great idea, but nobody is going to invent
French if they’re constantly being attacked by bears. Do you
see? SYSTEMS HACKERS SOLVE THE BEAR MENACE.
Only through the constant vigilance of my people do you get

the freedom to think about croissants and subtle puns involv-
ing the true father of Louis XIV. So, if you see me wandering
the halls, trying to explain synchronization bugs to confused
monks, rest assured that every day, in every way, it gets a little
better. For you, not me. I’ll always be furious at the number 7,
but such is the hero’s journey.

USENIX is the fi rst computing association to o� er free and open
access to all of our conferences proceedings and videos. We
stand by our mission to foster excellence and innovation while
supporting research with a practical bias. Your membership fees
play a major role in making this endeavor successful.

www.usenix.org/membership

Please help us support open access.
Renew your USENIX membership

and ask your colleagues to join or renew today!

Do you know about the
USENIX Open Access Policy?

https://www.usenix.org

